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The polyelectrolyte layer coating mammalian cells, known as the glycocalyx, is im-
portant in communicating flow information to the cell. In this paper, the layer is
modelled as a semi-infinite, doubly periodic array of parallel charged cylinders. The
electric potential and ion distributions surrounding such an array are found using
the Poisson–Boltzmann equation and an iterative domain decomposition technique.
Similar methods are used to calculate Stokes flows, driven either by a shear at in-
finity or by an electric field, parallel or transverse to the cylinders. The resulting
electric streaming currents due to flow over endothelial cells, and the electrophoretic
mobilities of red blood cells are deduced as functions of polymer concentration and
electrolyte molarity. It is shown that only the top portion of the layer is important in
these effects.

1. Introduction
The surfaces of mammalian cells are coated with a layer of highly charged polymer

molecules which, on some cells, may be up to 1 µm thick. This layer is known as the
glycocalyx, which literally means ‘sugar coat’. It was first described by Luft (1965)
who observed a ‘fluffy’ layer on endothelial cells taken from capillaries. Since then, it
has been studied most extensively on erythrocytes (red blood cells). Figure 1 shows
an electron micrograph of the glycocalyx on a vascular endothelial cell.

As the glycocalyx forms the outermost cell layer, it can be expected to influence
transport into and out of the cell, and interactions between cells. For example,
electrostatic repulsion between the glycocalyx layers on different cells might inhibit
cohesion between cells. Such an effect is of particular relevance to the flow of blood
through capillaries, when the glycocalyces of the erythrocytes and endothelial cells
lining the vessels are in close proximity. There is evidence that this regulates blood
flow through the vessels (Desjardins & Duling 1990).

More generally, the glycocalyx acts as a flow transducer to convey information
about blood flow to the endothelial cells, which then respond accordingly. The detailed
mechanism of this process, including the role of the glycocalyx, is not yet understood,
but it is known that advection of the ions surrounding the glycocalyx generates
electric streaming potentials which may convey information to the cell. Likewise, the
glycocalyx experiences a force due to flow above it, which is transmitted to the cell
membrane beneath. A general review of mechano-transduction in endothelial cells is
given by Davies (1995).

Electrical effects are also important in electrophoresis experiments, in which the
motion of red blood cells in an imposed electric field is studied. The charged surface
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Figure 1. The endothelial glycocalyx of the rabbit carotid artery stained with 0.2% Alcian blue in
0.3 M MgCl2.

of red blood cells changes under pathological conditions and their electrochemical
properties have been much studied in this manner (Seaman 1983).

The aim of the present work is to develop a formalism applicable both to the
migration of red cells in an electric field and to the generation of electric currents and
potentials by flow over the endothelial cell surface. It is necessary to consider not only
the hydrodynamic effects of the surface molecules, which effectively form a porous
medium, but also their electrical interactions with mobile ions. Some aspects of the
problem have been considered in other contexts involving unbounded polyelectrolyte
media or bounded but uncharged porous media.

Polyelectrolyte molecules have large molecular weight and become ionized in con-
tact with water, when their associated counter-ions become free hydrated ions in the
surrounding solution. In equilibrium, these counter-ions together with any other ions
present surround an isolated, charged molecule forming an electrical double layer.
The characteristic thickness of this layer, known as the Debye length, depends on
the charge density of the polyelectrolyte and the ionic strength of the surrounding
solution of mobile ions. As fluid moves through the layer it advects ions, generating
a streaming current which is detected by the streaming potential gradient it induces.
This process occurs in all blood vessels, although in practice, streaming potentials are
difficult to measure in vivo except in the large vessels such as the aorta (Sawyer &
Srinivasan 1972).

When the electrical double layers are thin various models are possible. For example,
Edwards (1995) considered pressure-driven flows through an unbounded porous
medium. In the glycocalyx, however, the flow is driven by shear above the layer and,
furthermore, adjacent macromolecules interact electrically as the separation distance is
comparable to the Debye length. The standard model for calculating ion distributions
is to treat individual polyelectrolyte molecules as infinitely long circular cylinders, with
a uniform surface charge density. The reasoning behind this is that the high charge
density of the polyelectrolytes will cause adjacent polymer segments to repel each
other, so that the molecule adopts a much more stretched configuration than would
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an uncharged polymer of similar structure. The distribution of ions surrounding the
molecule is then found using the Poisson–Boltzmann equation (see § 2). The effect of
an array of polyelectrolyte molecules can be incorporated into the model by using a
‘cylindrical cell’ approximation in which the presence of the other macromolecules in
the system is represented by imposing a suitable boundary condition on a cylindrical
outer boundary (Kuhn, Kunzle & Katchalsky 1948; Katchalsky 1971). This approach
has been used more recently to model the polyelectrolyte properties of biological
tissues by several researchers (e.g. Phillips 1987; Edwards 1995). Similar cylindrical
cell approximations were used for the Stokes equations by Happel (1957, 1958, 1959).

Other researchers have represented the geometry of regular arrays of cylinders
more accurately. Sparrow & Loeffler (1959) solved the Stokes equations numerically
for axial flow past square and triangular arrays of cylinders. The solutions were
expressed as Fourier series in polar coordinates, with the coefficients being found
by sampling boundary value points and solving the resulting linear least-squares
problem numerically. A similar method was used by Sangani & Acrivos (1982) for
flow perpendicular to the cylinders for square and hexagonal arrays. Drummond
& Tahir (1984) calculated both the axial and transverse flow for square, triangular,
hexagonal and rectangular arrays of cylinders using a Stokeslet method. These papers
were compared with experimental data by Jackson & James (1986) who found
generally good agreement between the theoretical approaches and between the theory
and experimental measurements.

The above works have assumed an unbounded array of molecules. The glycocalyx
however has an upper boundary and, furthermore, the interactions between the
polymer layer and the pure fluid are important. We shall find that some of the
measurable quantitities are determined only by the top of the glycocalyx, rather than
its deep interior. In this paper we shall consider a semi-infinite layer of regularly
spaced cylinders, on the lines of Larson & Higdon (1986, 1987). We extend their
results to include electrical effects.

We model the glycocalyx as a semi-infinite square array of infinite circular cylinders,
parallel to the cell surface, with a uniform surface charge density, as shown in figure 2.
In treating the glycocalyx in this way, it is assumed that there are no substantial gaps
between neighbouring polymer chains and that these chains are aligned along the
z-axis. This latter assumption is questionable. However, if the full flow is regarded as
a suitable superposition of components parallel and transverse to the cylinders, the
results should be appropriate.

The content of this paper is as follows: In § 2 we calculate the ionic distributions
and electric potential for semi-infinite arrays of uniformly charged cylinders, using
an iterative, domain-decomposition method. In § 3 we examine axial Stokes flows
parallel to the cylinders driven either by a shear or by an imposed electric field. The
resulting streaming currents and electrophoretic velocities are calculated. In § 4 the
corresponding results for flows transverse to the direction of the cylinders are derived.
The implications and limitations of the model are discussed in § 5. A more detailed
account of the physiological relevance and applications will be presented elsewhere
(Mestel et al. 1999).

2. The electric potential
The electric potential, Φ, satisfies a Poisson equation

∇2Φ = −ρ
ε
, (2.1)
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Figure 2. A semi-infinite, doubly-periodic array of charged cylinders. Schematic representations
of the potential (left) and shear-driven axial flow (middle) are drawn midway between cylinders
(y = b) and passing through the cylinders (y = 0). The potential decays exponentially with the
Debye length in x > 0, and soon becomes periodic as x → −∞. The velocity becomes self-similar
in x < 0, decaying with a scale factor from cylinder to cylinder. In the iterative scheme boundary
conditions from x = ±∞ are passed up and down between squares (right).

where ε is the electric permittivity of the solution. The permittivity may vary a little
with the ion concentrations, but we will take it to be constant. The charge density, ρ,
due to I distinct ion species is assumed to satisfy a Boltzmann distribution

ρ(Φ) =

I∑
i=1

ezin
0
i exp

(
− ezi
kT

Φ
)
, (2.2)

where −e is the charge of an electron, k is the Boltzmann constant, T is the
absolute temperature, while n0

i is the concentration of ion type i in the fluid far
from the glycocalyx and zi its valency. In physiological conditions, the most common
ions present are sodium (Na+), chloride (Cl−) and an order of magnitude lower
concentration of calcium (Ca2+). Electrical neutrality at infinity requires

∑
zin

0
i = 0,

so that, neglecting the calcium ions, there are equal concentrations of sodium and
chloride ions at infinity.

The Poisson–Boltzmann equation (2.1) with (2.2) may be linearized provided the
electrical potential Φ� kT/e to obtain

∇2Φ = κ2Φ (2.3)

where κ−1 is the Debye length, given in terms of the above parameters by

κ2 =
e2

εkT

I∑
i=1

z2
i n

0
i . (2.4)
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A long polyelectrolyte molecule will be modelled as an infinite rigid cylinder of radius
a on whose surface the condition

∂Φ

∂r
= −Q

ε
(2.5)

is imposed. By Gauss’ law, this corresponds to a total charge 2πaQ per unit axial
length on the cylinder. It is simplest to think of Q as being a uniform surface charge
density, although formally this is so only if the surface tangential field is small or if
the cylinder interior has relatively low permittivity. In practice, the radially symmetric
part of Φ is indeed dominant near r = 1 and so it would be reasonable to treat Q
as a surface charge. Instead, we will regard the charge as being suitably distributed
over the cylinder cross-section. The cylinder interior will be assumed to have the same
electrical properties as the surrounding fluid, so that when in § 3 and § 4 we consider
electrophoresis and superimpose an external field on the system, this field is unaltered
by the presence of the cylinders. This need not be the case in other models (Derjaguin
& Dukhin 1974).

We non-dimensionalize using the length scale a writing

φ = − e

kT
Φ, σ =

Qea

εkT
, c = κa. (2.6)

As Q < 0 for the polymers comprising the glycocalyx, we have σ < 0. The dimensional
potential Φ < 0 everywhere, but in the dimensionless variables φ > 0, ρ = c2φ > 0
and the local electric field is +∇φ. Then the non-dimensional forms of (2.3) and (2.5)
are

∇2φ = ρ = c2φ with
∂φ

∂r
= σ on r = 1. (2.7)

Far from the cylinder as r → ∞, the potential φ → 0. The parameter c−1 is a
non-dimensional Debye length, being the scale of exponential decay of the electrical
double layer for an isolated molecule. The charged cylinder attracts oppositely signed
ions from the solution which form an electrically neutralizing shield around the
polyelectrolyte molecule.

It is worth observing that z-dependent charge distributions can be analysed sim-
ilarly. For example, consider a charge density which varies periodically along the
cylinder of the form

σ = σ0 + σ1 cos kz.

This might be regarded as a more realistic model of a charged molecule, which con-
tains a series of point charges along its length. Writing φ = σ0φ0(r, θ)+σ1φ1(r, θ) cos kz,
then φ1 satisfies

∇2φ1 = β2φ1, where β2 = c2 + k2, with
∂φ1

∂r
= 1 on r = 1. (2.8)

Thus φ1 satisfies an identical problem to φ0, but with a smaller value of the Debye
length, as β−1 < c−1. The exponential decay rate of φ1 is therefore greater than that
of φ0, so that at fairly short distances from the cylinder the potential φ is dominated
by the z-independent component. Any experimentally measurable quantities, such as
osmotic pressure, will depend on the potential at some distance from the molecule.
They are therefore determined by φ0, and will not be affected by microscopic vari-
ation along the molecule. This argument can be generalized to any periodic charge
distribution and therefore helps to justify the use of a uniformly-charged cylinder as
a model for a molecule consisting of point charges.
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We now consider the solution of (2.7) in a semi-infinite square array of charged
cylinders, as in figure 2. The array is unbounded as y → ±∞, or as x→ −∞, but there
is a topmost layer of cylinders with centres on x = −b. The potential φ is 2b-periodic
in y, and satisfies

∇2φ = c2φ in |y| < b and ri > 1 ∀i > 0, (2.9)

where ri is the radial coordinate centred on the ith cylinder,

r2
i = y2 + (x+ b+ 2ib)2. (2.10)

Far above the array of cylinders, where the immersing electrolyte solution is electrically
neutral, we have φ → 0. Deep within the array, the upper boundary has little effect
and φ tends to the solution for a fully periodic array. If we represent this as φ∞, then
the boundary conditions are

∂φ

∂ri
= σ on ri = 1,

∂φ

∂y
= 0 on |y| = b, (2.11)

and

φ→ 0 as x→∞, φ→ φ∞ as x→ −∞. (2.12)

2.1. The numerical method

The above problem, and corresponding ones for the Stokes equations in §§ 3 and 4, are
solved using an iterative scheme similar to that of Larson & Higdon (1986, 1987). The
method calculates the solution within the full domain by solving iteratively problems
in square domains.

The array of cylinders can be truncated to a finite number in the x-direction,
so long as sufficient cylinders remain for the solution to have tended to φ∞ before
the bottom-most cylinder is reached (i.e. a distance several Debye lengths from the
top surface.) The domain x < 0, |y| < b is decomposed into square domains, or
cells, surrounding the cylinders, as shown on figure 2. The half-space x > 0 is left
undivided. The last boundary condition in (2.12) for x→ −∞ is equivalent to setting
∂φ/∂x = 0 on the boundary of the bottom-most square cell, owing to the symmetry
of the problem for the fully-periodic array.

Within each square cell, φ is expressed as a function of the local polar coordinates,
ri and θi, where ri = 0 is at the centre of the cylinder. The solution is written as a
Fourier series in θi with coefficients which are functions of ri. Owing to the symmetry
of the solution around y = 0, only terms in cos nθi are required. Within the upper
half-space the solution is written as a Fourier series in y whose coefficients are
functions of x. Again, owing to the symmetry, only terms in cos nπy/b are necessary.
For coefficients γn to be found, the solution satisfying φ→ 0 as x→∞, is

φ =

∞∑
n=0

γn exp

(
−
(
c2 +

n2π2

b2

)1/2

x

)
cos

nπy

b
. (2.13)

After applying the boundary condition at ri = 1 given in (2.12), the solution for φ in
each square domain can be expressed as

φ = φi(ri, θi) ≡ σ

c

K0(cri)

K ′0(c)
+

∞∑
n=0

αin

(
In(cri)

I ′n(c)
− Kn(cri)

K ′n(c)

)
cos nθi. (2.14)

In (2.14) the subscript i denotes the square domain in which φ is calculated. The
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constants αin are to be determined while In and Kn denote modified Bessel functions.
The coefficients αin will have different values in each square domain. For squares deep
within the array (i → ∞) only the terms in cos 4mθ will have non-zero coefficients,
owing to the greater symmetry.

Within each domain, the series for φi is truncated to N terms. For given boundary
conditions on the edge of the square cell, applying (2.14) at M sampled points on
the boundary, where M > N, results in an over-determined system of linear algebraic
equations for the coefficients. A numerical solution was found using the LAPACK
linear least-squares solver ‘dgels,’ which performs a QR factorization followed by
iterative refinement. Variation of the numbers M and N of boundary points sampled
and of terms in the series verified the accuracy of the calculated solution.

However, in this case, the only known conditions on the solution on the boundaries
A and B of each square domain (see figure 2) are that φ and its normal derivative
φx must be continuous there. In addition, the periodicity condition φy = 0 must be
imposed explicitly on the boundaries C. This problem could be solved simultaneously
for all the square cells, but the iterative procedure described below is computationally
more efficient.

Each iteration starts at cell 0 (see figure 2). As a first approximation the boundary
conditions on cell 0 are taken to be those imposed as x → ∞ and x → −∞, that is
φ = 0 on the top boundary A and φx = 0 on the bottom boundary B, together with
φy = 0 on the side boundaries, C and D. The solution for φ that best matches these
boundary conditions can be found by truncating the infinite series expansion (2.14),
applying the boundary conditions at a finite number of points around the boundary,
and finding the coefficients using a least-squares method. This solution is then used
to give approximations for the boundary conditions on the top of cell 1, and the
bottom of the upper half-space. The solution process then passes down into the layer
of cylinders, with the solution for each square cell providing the boundary conditions
for the next cell. Therefore for the cells in x < 0, the applied boundary conditions on
the zeroth iteration are

φ0
i |A = φ0

i−1|B, ∂φ0
i

∂x

∣∣∣∣
B

= 0, (2.15)

where φji is the value of φ in the ith domain, on the jth iteration, and A and B are
defined in figure 2.

For the upper pure-fluid half-space, the coefficients of the Fourier expansion (2.13),
truncated to N terms, are found by matching values for φx at M > N points at x = 0,
and solving the resulting least-squares problem.

For successive iterations, the process is repeated, using the boundary conditions
calculated from the previous iteration on boundary B of each cell. For example, for
cell 0 this gives the following conditions:

φ
j+1
0 |A = φju|x=0,

∂φ
j+1
0

∂x

∣∣∣∣
B

=
∂φ

j
1

∂x

∣∣∣∣
A

, (2.16)

where φju is the solution for φ in the upper half-space, x > 0, on the jth iteration. In
the other square cells the following conditions are applied:

φ
j+1
i |A = φ

j+1
i−1 |B, ∂φ

j+1
i

∂x

∣∣∣∣
B

=
∂φ

j
i+1

∂x

∣∣∣∣
A

. (2.17)

At the bottom of the lowermost square domain and the top of the upper space the
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conditions used are

∂φ
j+1
i

∂x

∣∣∣∣
B

=
∂φ∞
∂x

∣∣∣∣
A

≡ 0 and
∂φj+1

u

∂x

∣∣∣∣
x=0

=
∂φ

j+1
0

∂x

∣∣∣∣
A

. (2.18)

Throughout the iterative procedure, each cell uses the values of φ from the current
iteration on boundary A, and φx from the previous iteration on boundary B, as shown
in figure 2.

Owing to the symmetry of the solution in y, only half of the solution domain,
b > y > 0, needs to be considered throughout this process. For each iteration, the
boundary points sampled for the square cells are distributed with one quarter of the
points on the upper boundary A, one quarter on the lower boundary B, and the
remaining half on the periodic boundary C. The sampled points are equally spaced
on each boundary, with the corners omitted, and the point nearest to the corner being
at a distance of 0.001. This distribution of points was found by trial and error to be
the most successful over a wide range of solid concentrations. Including the corner
point raises the problem as to what boundary condition to apply there. Imposing
two boundary conditions at the corners gave them too great a weighting in the
least-squares problem, causing convergence problems in some parameter ranges. This
difficulty was resolved by placing sampled boundary points close to, but not actually
at, the corners. For the half-space, x > 0, the boundary points are all located along
the boundary x = 0, for b > y > 0. Again the corner point is omitted.

In practice, convergence is improved by using a relaxation parameter, ν, and under-
relaxing. Thus instead of using the boundary conditions (2.16) to solve for φ in cell
0, the conditions

φ
j+1
0 |A =

(φju + νφj−1
u )|x=0

1 + ν
,

∂φ
j+1
0

∂x

∣∣∣∣
B

=
1

1 + ν

(∂φj1
∂x

+ ν
∂φ

j−1
1

∂x

)∣∣∣∣
A

, (2.19)

are used. Similar conditions are also used for the other cells. About 5 iterations were
necessary for convergence, which was most rapid over a wide range of parameter
values for ν = 0.25. The final results shown here used N = 20, and M = 40 and have
a relative accuracy of 10−6. The relative accuracy was determined by varying N, M
and ν, and comparing the results obtained.

The same method can be used when the surface charge varies with depth in
the glycocalyx layer. This means that, while the array remains 2b-periodic in the
y-direction, successive cylinders deeper within the array can have different surface
charge densities, σ = σi. The numerical method then proceeds exactly as described
above. Similarly, the spacing between adjacent cylinders can be varied, allowing the
polymer density to vary with height above the cell. In this case the domains are
rectangular rather than square. The points at which the boundary conditions are
imposed are chosen to be equally spaced over the domain boundary, omitting the
corner points as before.

2.2. Numerical results

Results are presented for parameter ranges which include those found physiologically
in the glycocalyx and those which are in common experimental use. Ion concentrations
are expressed in molarity, so that for example a 1 M solution of salt contains
Avogadro’s number of sodium ions per litre. Polymer concentrations are expressed
in volume fractions, π/(4b2). Mammalian cells are exposed to a 0.15 M ionic solution
in vivo, and the polymer volume fraction is in the range 1–10%. The model requires
the input of three parameters, namely the surface charge density of the cylinders,
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Figure 3. The potential φ for a semi-infinite square array of cylinders calculated at the centreline
(y = 0) and between the cylinders (y = b). The top of the topmost cylinder is at x = 1 − b, as in
figure 2. The polymer concentration is 10% (b = 2.802), and the electrolyte molarity is 0.15 M.

the radius of the cylinders, and the spacing between the cylinders or equivalently the
solid volume fraction of the molecules.

The surface charge density of the cylinders depends on the molecules that are
present in the glycocalyx. The biochemical data are incomplete and so we assume
charges of −e separated by 1.6 nm, a value measured for heparan sulphate, which is
typical of the cell-surface polyelectrolytes at physiological pH (Matthews 1975).

The cylinder radius is a more difficult parameter to estimate, since it does not
correspond to any real physical quantity. Throughout this paper we shall use the
value a = 0.5 nm which is a typical size of polyelectrolyte molecules, and has
been widely used throughout the literature (e.g. Buschmann & Grodzinsky 1995).
In comparison, the radius of a hydrated sodium ion Na+, surrounded by closely
associated water molecules, is 0.52 nm (Kwak et al. 1976), while that of DNA is
0.97 nm (Gross & Strauss 1966).

Except when comparing with data from experiments performed at other tem-
peratures, we shall use the human body temperature 310 K. Other relevant phys-
ical constants are the electron charge, e = 1.60 × 10−19 C, Boltzmann’s constant
k = 1.38 × 10−23 J K−1, the permittivity of water, ε = 6.91 × 10−10 C2 J−1 m−1 and
Avogadro’s number 6.02 × 1023. Thus for a 0.15 M saline solution the Debye length
κ−1 = 0.8 nm, while for a 10% polymer concentration, the shortest distance between
cylinders is 1.8 nm.

Figure 3 shows a typical solution for the non-dimensional potential, φ, as calculated
from (2.13) and (2.14). The curves are plotted at y = 0 and y = b, as drawn in figure 2.
The discontinuities in the former correspond to the positions of the cylinders. The
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results show that the potential inside the layer tends exponentially on the scale of
the Debye length towards φ∞, the solution for a doubly-infinite array. This justifies
the neglect of the position of the cell membrane in the model. Likewise, the potential
above the cylinders decays essentially as e−cx.

The potential varies notably over the surface of the uppermost cylinder owing to
the asymmetry, but much less over the surfaces of the other cylinders. This variation
gives rise to a resultant electrostatic force, Fi on the ith cylinder. By symmetry, this
will have only an x-component, and can be thought of as the interaction of surface
charge and tangential field or, in our formulation, as the net force on the charge
distributed over the cylinder body. Using the Maxwell stress tensor on ri = 1, this
force is given by

Fi = −
∫ 2π

0

(
σ
∂φ

∂θ
sin θ +

1

2

(
∂φ

∂θ

)2

cos θ

)
ri=1

dθ ' πσβi1, (2.20)

from (2.11) and (2.14), where

βin = αin

(
In(c)

I ′n(c)
− Kn(c)

K ′n(c)

)
. (2.21)

In (2.20) we have used the fact that except for high polymer concentrations, the
radial field is dominant on the cylinder surface, σ � ∂φ/∂θ. It is not necessary to
make this approximation, but it illustrates the near equivalence of the models with
distributed or surface charge. Note that βi1 → 0 as i → ∞. The outermost cylinders
thus experience an electrostatic force repelling them from the other cylinders. In the
high shielding limit, bc → ∞, the force on a cylinder in the top layer is mainly due
to the cylinder immediately below it. Considering two cylinders in isolation it can be
shown that

F0 ' σ2π3/2

c2K ′0(c)K ′1(c)
e−2bc

(bc)1/2
. (2.22)

In addition to the electrostatic force given by (2.20), a pressure gradient must act
in the system in order to maintain the equilibrium distribution of the mobile ions.
This force must satisfy

∇p = ρ(φ)∇φ = c2φ∇φ (2.23)

or integrating, assuming zero pressure at infinity,

p = 1
2
c2φ2. (2.24)

It is natural to identify (2.24) as the osmotic pressure of the system. In simple
geometries, such as two parallel charged plates, this expression for p can be shown
to be equal to the thermodynamic osmotic pressure, but more generally the osmotic
pressure is altered by additional electrical stresses due to curvature, as described in
Russel, Saville & Schowalter (1989). It should in principle be possible to calculate
the osmotic pressure of the glycocalyx from thermodynamic first principles using the
methods described by Marcus (1955) which would be of value as it has not yet proved
possible to measure it experimentally.

The additional force, Gi, on the ith cylinder due to the pressure is in the x-direction
and given by

Gi = −
∫ 2π

0

p cos θ dθ ' −πc2βi1

(
σK0(c)

cK ′0(c)
+ βi0

)
(2.25)
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from (2.24), (2.20) and (2.14), neglecting other terms due to the observed rapid decay
of the Fourier coefficients, αi2 � αi0 etc. The total force on the ith cylinder is Fi + Gi.
For small values of c (large Debye lengths, low molarity of electrolyte), Gi ∼ c2Fi and
electrostatic repulsion of the cylinders is the dominant force. At large c, 1� Gi ∼ cFi
and the osmotic pressure is more significant, though small.

Figure 4 shows the variation of the force on the uppermost cylinders with the
molarity of the surrounding salt solution and with the solid volume fraction within
the glycocalyx. The force decreases dramatically as the concentration of mobile ions
is decreased, and as the polymer concentration is increased. It becomes negligible
when the Debye length is much less than the cylinder separation distance and the
cylinders do not interact electrically. Also shown in figure 4 is the two-cylinder
approximation (2.22). The repulsion between the polyelectrolyte chains must be
balanced by appropriate molecular tethering to the cell membrane, which is not
included explicitly in the model. These forces prevent the glycocalyx of a cell becoming
too dense, as the repulsion will lead to disruption or thickening of the layer.

3. Axial flow
Because of the linearity, a general flow through the glycocalyx can be regarded

as the superposition of an axial flow parallel to the cylinders and a transverse flow
perpendicular to them. The former is easier to calculate and may even be more impor-
tant, as it is plausible that there will be a tendency for the polyelectrolyte molecules
to align themselves with the prevailing flow. Transverse flow will be considered in § 4,
while in this section the flow is restricted to being in the axial direction only. Such
a one-dimensional flow field could be driven by an axial shear as x → ∞ or by an
imposed axial electric field.

Although the blood flow is driven by a macroscopic pressure gradient, on the
scale of the glycocalyx of endothelial cells lining the vessel, this can be represented
totally by a shear flow at infinity. Flows driven by an imposed electric field occur in
electrophoresis measurements as described in § 1. In either sort of flow, the electrical
forces caused by local variation in the electric potential have no effect on the velocity,
and are balanced by a local pressure gradient. Therefore, in the absence of an
externally applied electric field, the fluid velocity will be unaffected by the electrical
forces present in the system, and the velocity profile will be identical to that for axial
flow through an array of uncharged cylinders. Such a flow will, however, give rise to
a streaming current or potential, with physiological consequences as discussed in § 1.

The problem of shear-driven axial flow through a semi-infinite array of uncharged
cylinders has been previously solved by Larson & Higdon (1986), providing a useful
check on our computations. The main difference between their method and the one
described below is that they used a boundary integral rather than spectral formulation
within each subdomain. Also, they divided the whole space into square sub-domains,
whereas here the upper half-space is undivided, reducing slightly the computational
cost.

The flow is assumed to be governed by the Stokes equations in the presence of an
electric field,

∇ · u = 0, ∇p = µ∇2u+ ρ(∇φ+ E), (3.1)

where u is the velocity, µ the constant viscosity, φ the potential of the ions with
density ρ and E any externally imposed field. For shear-driven axial flow with no
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external field, u = (0, 0, u(x, y)) and (3.1) reduces to

∇2u = 0. (3.2)

The boundary conditions are

u = 0 on ri = 1,
∂u

∂x
→ λ as x→∞ and u→ 0 as x→ −∞, (3.3)

where the shear rate λ is determined by the macroscopic conditions.
The solution is found using a similar decomposition method to that described in
§ 2 for the solution of the linearized Poisson–Boltzmann equation (2.9). Within each
square sub-domain, applying the no-slip boundary condition on the cylinder surface
at ri = 1, u is given by

u(ri, θi) = ζi0 ln ri +

∞∑
n=1

ζin(r
n
i − r−ni ) cos nθi. (3.4)

In the half-space x > 0, the corresponding series representation with the required
large-x behaviour is given by

u(x, y) = η0 + λx+

∞∑
n=1

ηn exp
(
−nπx

b

)
cos
(nπy
b

)
. (3.5)

As ux is known as x→ ∞ and u is known as x→ −∞, within each square the value
of ux from the current iteration is passed down from on top (side A in figure 2),
while the previous value of u is passed up from below (side B.) The coefficients ζin
and ηn are found for each domain by least-squares methods as in § 2. As the decay in
(3.4) is algebraic rather than exponential, more coefficients are needed for comparable
accuracy. Again, under-relaxation is needed for convergence, with ν = 0.15 giving the
best results for N = 30.

The results show that the velocity profile decays exponentially with depth into the
array. The velocity quickly becomes self-similar for successive square cells within the
array of cylinders. In fact, for all concentrations considered here, only the velocity
around the top cylinder differs noticeably from the self-similar form.

Some distance above the cylinders, the velocity approaches exponentially the shear
flow above a virtual plate at x = x∗,

u→ λ(x− x∗) as x→∞, where x∗ = −η0/λ. (3.6)

Thus one effect of the glycocalyx is to move the effective cell boundary to a site about
one cylinder separation distance below the top of the layer, but some distance above
the actual cell membrane.

A typical solution for the axial velocity is shown in figure 5, for a solid volume
fraction of 10%. The velocity in each panel of the graph is scaled to show the devel-
opment of self-similar profiles for successive domains. The velocity on the symmetry
line y = b therefore appears discontinuous. The values of these scaling factors show
that the velocity drops off more rapidly for higher polymer concentrations. The ratios
between successive scaling factors for different volume fractions compare well with
those calculated by Larson & Higdon (1986), as shown in figure 6. The closeness
of the decay factor to unity indicates that for some purposes a Brinkman equation
model might be suitable (e.g. Tsay & Weinbaum 1991). However, such an approach
obscures the structure close to the molecules on which the electric streaming currents
depend critically. This is even more so for the transverse flows considered in § 4.
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3.1. The streaming current and streaming potential

When mobile ions are present in the moving fluid, the axial flow field will also generate
an electric current as the ions move with the fluid. Such a current is known as a
‘streaming current’. Very often, the current paths close by means of bulk conduction
within the main body of the fluid. For this to occur, a potential difference must be
set up along the cylinders, called a streaming potential.

The non-dimensional streaming current density, j(x, y), is in the z-direction and is
given by

j = ρu = c2φu, (3.7)

where u is as found above for axial flow, and φ is given in (2.13) and (2.14). This
gives a total axial current per unit glycocalyx length of

Jax =
c2

b

∫ b

0

∫ ∞
−∞
φu dx dy (3.8)

(defining u ≡ 0 inside the cylinders).
The local streaming current given by (3.7) is zero far from the glycocalyx (where

φ→ 0) and also deep within the glycocalyx (where u→ 0). A typical graph of the local
current density is shown in figure 7 for a volume fraction of 10% and an electrolyte
concentration of 0.15 M. This shows that the only significant contribution to the total
current comes from the fluid surrounding the top one or two cylinders in the array.
This is important in practice, because it means that experimental data on streaming
potentials can only give information about the charge density of the outermost part
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of the glycocalyx. It also confirms the implicit assumption in the model that the lower
boundary of the glycocalyx (the cell surface) is unimportant in determining quantities
which can be measured experimentally, and so can be neglected in the model without
significant effect.

The streaming current can be compared with that which would occur over a
charged plate at x = x∗. The value of x∗ could be chosen to be the hydrodynamical
value as given by (3.6). In fact, below we shall use the value x∗ = 1−b, corresponding
to a flat plate resting on top of the uppermost cylinders (recall that the centres of the
uppermost cylinders are at x = −b.) If the plate carries a charge density σ∗, then the
corresponding potential φ∗(x) and current density j∗(x) are given in x > x∗ by

φ∗ = −σ
∗

c
e−c(x−x

∗) and j∗ = −cλσ∗(x− x∗)e−c(x−x∗), (3.9)

using (3.6). The appropriate charge density σ∗ could be chosen to give rise to the
same total streaming current, or the same molecular charge per unit length as one
row of cylinders. Figure 7 includes a graph of j∗(x) with σ∗ chosen so that j∗(x) has
the same maximum value as j(x). It can be seen that the flat-plate current attains this
maximum value at a larger value of x than does the cylinder current, as the velocity
close to a flat plate is lower than the velocity at the same distance above an array of
cylinders.

Figure 8(a) shows the effect on the total streaming current of varying the polymer
concentration and the molarity of the surrounding electrolyte. As described above,
the majority of this current is generated by the fluid surrounding the topmost
layer of cylinders only, and therefore will vary linearly with the charge density of
the uppermost cylinders. At low concentrations of electrolyte, or at high volume
fractions of polymer, when the Debye length is comparable to the spacing between
the cylinders, the potentials within the glycocalyx are greatest, and hence so is the
current generated. At high electrolyte concentrations, when the Debye length is much
less than the spacing between the cylinders, the potential will only be non-zero close
to each cylinder. The generated current then depends only on the region close to each
cylinder, and hence is independent of polymer concentration.

3.2. Electrophoretic mobility

The electrophoretic mobility of a biological cell is the steady velocity it attains when
placed in a uniform electric field. A negatively-charged cell such as a red blood cell
or endothelial cell will have a negative electrophoretic mobility.

The cell and all the attached cylinders are assumed to move at a constant velocity
under the influence of an externally applied electric field, (0, 0,−E). The Stokes
equation (3.1) for the axial fluid velocity, u(x, y), is

µ∇2u = ρE = Ec2φ, (3.10)

where φ is the electric potential due to local variations in the ion distributions,
calculated in § 2 from the linearized Poisson–Boltzmann equation. In a frame with
the cylinders at rest, the boundary conditions are

u = 0 on ri = 1, u→ 0 as x→ −∞ and ux → 0 as x→∞. (3.11)

As x → ∞, u approaches a value u0, to be calculated, which is the electrophoretic
velocity.

We note that equation (3.10) is similar to (2.9) and hence that a particular solution
is u = Eφ/µ. The solution satisfying the requisite boundary conditions can therefore
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Figure 8. The variation with molarity of (a) the total axial streaming current, Jax, (b) the advective
part of the transverse streaming current, Jadv , for unit shear (λ = 1) and polymer concentrations of
1% and 10%.

be found by adding on a suitable harmonic function, in the same way as in the
absence of electrical effects. Since φ is uniform in the z-direction, the applied electric
field does not perturb the distribution of mobile ions or the electric potential from
the equilibrium values calculated using the Poisson–Boltzmann equation (2.9).

After applying the no-slip boundary condition on the cylinders at r = 1, noting
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that φ 6= 0 there, the expansions for u in the square sub-domains take the form

u(ri, θi) = ζi0 ln ri +

∞∑
n=1

ζin(r
n
i − r−ni ) cos nθi

+
E

µ

(
φi(ri, θi)− σ

c

Kn(c)

K ′n(c)
+

∞∑
n=0

βinr
−n cos nθi

)
(3.12)

where βin are as given in (2.21) for the αin as found from (2.14). The series expansion
in the half-space x > 0, with the required large-x behaviour, is

u(x, y) = u0 +

∞∑
n=1

ηn exp
(
−nπx

b

)
cos
(nπy
b

)
+ Eφ(x, y), (3.13)

where φ(x, y) is the solution (2.13) calculated above.

The unknown coefficients u0, ζin and ηn, are found as previously. The iterative
method proceeds as before, with the values from the previous iteration of u and
ux being passed respectively up from the bottom and down from the top. Under-
relaxation is once more required for convergence. A representative solution for
the electrophoretic mobility u0/E is shown in figure 9, where it is compared with
experiments and the electrophoretic mobility for a field transverse to the cylinders, as
discussed in the following section.
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4. Transverse flow
In this section the flow is restricted to be in the plane perpendicular to the cylinder

axes. This two-dimensional flow field, u = (u, v, 0), satisfies the Stokes equations

µ∇2u = ∇p− c2φ∇φ, ∇ · u = 0 (4.1)

where p is the pressure and the potential φ satisfies the linearized Poisson–Boltzmann
equation (2.7). For flow driven by a shear of strength λ above the array of cylinders,
no net pressure gradient acts. The electric force is conservative, and merely gives
rise to an osmotic pressure as in (2.11). Taking the curl of (4.1) and defining a
streamfunction by u = ∇ ∧ (0, 0, ψ), the flow can be represented by

∇2ψ = −ω, ∇2ω = 0, (4.2)

where the vorticity ∇ ∧ u = (0, 0, ω). The associated boundary conditions on the
cylinders are

∂ψ

∂ri
=
∂ψ

∂θi
= 0 on ri = 1, (4.3)

at top and bottom

∂2ψ

∂x2
→ λ as x→∞ and

∂ψ

∂x
→ 0 as x→ −∞, (4.4)

and on the symmetry lines

∂ψ

∂y
=
∂ω

∂y
= 0 on |y| = b. (4.5)

In the ith cylinder domain, the vorticity is expanded as

−ω = fi0 + gi0(ln ri + 1) +

∞∑
n=1

(
finr

n
i + ginr

−n
i

)
cos nθi. (4.6)

Below, we shall suppress the suffix i for clarity. It is not possible to solve for
the vorticity directly, since there are no boundary conditions on ω at r = 1. The
corresponding expansion for ψ, satisfying ψr = ψθ = 0 on r = 1, is

ψ = A+ 1
4
f0(r

2 − 2 ln r − 1) + 1
4
g0r

2 ln r

+
[

1
8
f1(r

2 − 2r + r−1) + 1
4
g1(2r ln r − r + r−1)

]
cos θ

+
1

4

∞∑
n=2

[
fn

(
rn+2

n+ 1
− rn

n
+

r−n

n(n+ 1)

)
+ gn

(
r2−n

1− n −
rn

n(1− n) +
r−n

n

)]
cos nθ.

(4.7)

In x > 0 the expansions are

−ω = λ+

∞∑
n=1

an cos
(nπy
b

)
exp

(
−nπx

b

)
(4.8)

and

ψ = B + 1
2
λx2 + b0x+

∞∑
n=1

(
bn − 1

2
anx

b

nπ

)
cos
(nπy
b

)
exp

(
−nπx

b

)
. (4.9)
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We normalize ψ by setting B = 0. There is still one too many unknown coefficients
and another condition must be imposed before applying the symmetry conditions
on y = b. This is because the domain is not simply connected, and the solution as
given in (4.7) does not necessarily satisfy the condition that the pressure, p, be a
single-valued function of θ. This condition can be expressed as∫ 2π

0

∂p

∂θi

∣∣∣
ri=1

dθi = 0 or

∫ 2π

0

∂ω

∂ri

∣∣∣
ri=1

dθi = 0 (4.10)

from (4.1), which with (4.6) implies

gi0 = 0. (4.11)

The Fourier series are truncated to N terms so that the coefficients can be found
numerically. This is done as before, by sampling the boundary conditions at M > N
points around the outer boundary. The difference is that in this case two boundary
conditions are imposed at each sampled point, essentially one on ψ and one on ω.
A similar method was used by Sangani & Acrivos (1982) to solve for the pressure-
gradient-driven transverse Stokes flow in a doubly-periodic square array of cylinders
in the absence of electric charge.

As before, an iterative technique is used for the boundary conditions at the artificial
boundaries dividing adjacent square domains. The values of ψxx and ψ are passed
down from the current iteration and those of ψx and ψxxx are passed up from the
previous iteration. Under-relaxation is required for convergence, with a relaxation
parameter ν = 0.2 giving the best results for N = 30.

This problem was also solved by Larson & Higdon (1987), using the same iterative
method but with a boundary integral formulation within each square domain. The
results are once more in good agreement and are not repeated here. The flow structure
is more complex than in the axial case, with regions of closed streamlines.

4.1. Streaming current and potential

Streaming current calculations are carried out for transverse shear flow at infinity,
in the absence of an externally-applied electric field. We neglect any distortion of
the distribution of mobile ions due to the movement of the surrounding fluid. This
in effect assumes that Brownian diffusion of ions instantaneously replaces any ions
advected by the motion. As discussed by Sherwood (1980, 1981), this implies the
existence of an additional current given by a function Ω(x, y) such that the local
streaming current density, j(x, y), is given by

j = ρu+ ∇Ω = c2φu+ ∇Ω. (4.12)

Charge conservation requires ∇ · j = 0, so that outside the cylinders

∇2Ω = −c2u · ∇φ, (4.13)

a known function as φ and u are known. The symmetry, periodicity and the require-
ment of no current flow into the cylinders lead to the boundary conditions

∂Ω

∂ri
= 0 on ri = 1 and Ω = 0 on y = ±b. (4.14)

Equations (4.13) and (4.14) determine the extra current uniquely. On physical grounds,
one might expect this current to resist the fluid-induced distortion of the ion cloud,
leading to a lower transverse streaming current than in the axial case. The advective
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electric current across y = b per unit length along the cylinders, Jadv , is in the
y-direction,

Jadv = −
∫ ∞
−∞
c2φ(x, b)

∂ψ

∂x
(x, b) dx. (4.15)

Jadv is plotted as a function of molarity in figure 8(b) for volume fractions of 1% and
10% and unit transverse shear (λ = 1). Comparison with figure 8(a) indicates the
much more rapid falling off with molarity, as expected because on y = b at large c,
φ ∼ exp(−cb).

The total transverse streaming current per unit cylinder length, Jtr = Jadv + JB ,
where the extra current

JB =

∫ ∞
−∞

∂Ω

∂y
(x, b) dx, (4.16)

follows from the solution of (4.13) with (4.14).
The asymptotic form of JB may be derived in the small Debye length limit, c→∞.

The source term in (2.3) is then localized to a layer of thickness c−1 about the
cylinders. On this short length scale, the streamfunction can be approximated as

ψ = − 1
2
n2ωs(θ) + O(c−1), where n = ri − 1 (4.17)

and ωs(θ) is the surface vorticity given by (4.6) on ri = 1. We know that the
contribution from the top layer of cylinders (i = 0) will dominate. The potential φ in
(2.14) is almost radially symmetric,

φ ' −σ
c

e−cn + O(c−1), (4.18)

so that from (4.18) and (4.17) the solution of (4.13) to leading order in c−1 can be
written

Ω = 1
2
c−2σω′s(θ)

(
c2n2 + 4cn+ 6

)
e−cn + Ω, (4.19)

where Ω is determined by

∇2Ω = 0 , Ω = 0 on y = ±b and
∂Ω

∂ri
=
σ

c
ω′s(θ) on ri = 1. (4.20)

Now by Green’s theorem applied to y∇2Ω − Ω∇2y,

2bJB =

∫
y=±b

y
∂Ω

∂y
dx = −

∮
ri=1

(
y
∂Ω

∂r
− Ω∂y

∂r

)
dθ =

∫ 2π

0

sin θ(Ω − Ωr)
∣∣
ri=1

dθ.

(4.21)

Thus only the first harmonic of Ω contributes to the streaming current. A cylindrical
cell approximation requiring Ω = 0 on r = b0 leads to the estimate for the streaming
current for large c,

Jtr ' JB '
∞∑
i=0

πσ

cb

(fi1 + gi1)

(1 + 1/b2
0)
' πσ

cb

(f01 + g01)

(1 + 1/b2
0)
, (4.22)

where fi1 and gi1 are as found from (4.6). A similar calculation for the axial streaming
current of (3.7) would give

Jax =
c2

b

∫
φu dx dy ' c2

b

∫
σ

c
e−cn ζ00n dn dθ =

2πσ

cb
ζ00, (4.23)

where ζ00 is as given by (3.4). We conclude that for small Debye lengths, the streaming
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current is formally of the same small order for both axial and transverse flows.
However, hydrodynamical effects control the numerical coefficients and ensure that
the axial current is significantly larger.

4.2. Electrophoretic mobility

We suppose that an external electric field E = (0,−E, 0) is applied parallel to the cell
surface, in a direction perpendicular to the cylinder axes. As in § 3, we use a frame
with the cell at rest, while the fluid far from the cylinders moves at a uniform velocity.
The motion is now given by

∇ · u = 0 and µ∇2u = ∇p− c2φ(E + ∇φ). (4.24)

As before, φ is assumed to equal the equilibrium potential from the linearized Poisson–
Boltzmann equation, given by (2.13) and (2.14). The imposed field, E, may well be
much greater than |∇φ|, when the last term in (4.24) could be neglected. However,
there is no need to do so as this term merely modifies the pressure distribution.

In terms of the vorticity, ω, and the streamfunction, ψ, (4.24) takes the form

∇2ψ = −ω, ∇2ω =
c2E

µ

∂φ

∂x
. (4.25)

As before, the solutions are represented as Fourier series in θi for the sub-domains
around the cylinders, and in y for the half-space above the layer of cylinders.
Comparison with (3.10) indicates that a particular solution for the vorticity is

ω =
E

µ

∂φ

∂x
, (4.26)

as the x-derivative commutes with the Laplacian. Thus ω may be expanded as

ω = fi0+gi0(ln ri+1)+

∞∑
n=1

(
finr

n
i + ginr

−n
i

)
cos nθi+

E

µ

(
cos θ

∂φ

∂r
− 1

r
sin θ

∂φ

∂θ

)
. (4.27)

The condition that p is a single-valued function of θi must again be explicitly applied.
In fact, this condition reduces once more to

gi0 = 0. (4.28)

Using (2.14), an expansion for ψ similar to (4.7) satisfying the conditions ψr = ψθ = 0
on the cylinders can now be found. Likewise, ψ and ω for x > 0 follow from (4.26),
(4.8) and (4.9). The familiar truncation and iteration procedure solves the problem.
The resultant electrophoretic velocities are plotted as a function of molarity in figure 9.
It is apparent that these are smaller than the corresponding results for axial flows.

4.3. Combination of axial and transverse results

In reality the polyelectrolyte chains are not all parallel, as assumed by our model.
Furthermore, a general flow will have both axial and transverse components. Thus a
suitable average of the transverse and axial results may well be more appropriate, but
it is not obvious what mean to take. For an uncharged, infinite, isotropic medium,
Jackson & James (1986) proposed a weighting of one-third axial and two-thirds
transverse. In the glycocalyx there will be few polyelectrolyte chains perpendicular
to the cell surface, so the equivalent assumption is a 50:50 split between axial and
transverse flow directions. Bearing in mind the nonlinear dependence with the volume
fraction, such calculations should probably be performed at half concentrations for
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each of the axial and transverse cases, rather than averaging the results at full
concentration. However, there may well be a tendency for molecules to align with the
prevailing flow, giving a greater number of axial molecules. This is especially the case
for charged molecules, which are likely to be straighter.

Figure 9 compares our calculated results with some experimental measurements
from Furchgott & Ponder (1941). It is apparent that the experimental data fall between
the axial and transverse curves, and so an average could give excellent agreement.

5. Implications and limitations
The model of a continuum of ions surrounding a semi-infinite array of charged

cylinders gives reasonably good agreement with experimental measurements of the
glycocalyx, both as regards electrophoretic mobilities of red cells and streaming
potentials in blood vessels.

An important conclusion from the model is that streaming currents and elec-
trophoretic mobilities are determined by the structure and behaviour of only the
outermost portion of the glycocalyx, and therefore give no information about condi-
tions near the cell surface. There is thus a limit as to what experimental measurements
of this kind can indicate about the biochemical structure of the glycocalyx. Our model
is independent of the depth of the glycocalyx, in contrast to some one-dimensional
models which require this depth as a parameter and are sensitive to its value. Indeed,
once the flexible nature of the glycoproteins is taken into account, the thickness of
the glycocalyx will be predicted by our model. Our predictions are compared with
those of Levine et al. (1983) in Mestel et al. (1999).

Once the electrostatic potentials are known, the distributions of the different species
of mobile ions present can be calculated, as described in Mestel et al. (1999). Just as
for the potential, the ion distribution only deviates from that for a doubly-periodic
array close to the surface of the array of cylinders. This means that close to the
surface of a biological cell, at the base of the glycocalyx, the ion concentrations will
be unaffected by the finite depth of the glycocalyx, assuming that it is deeper than
two or three Debye lengths. Therefore, the fully periodic potential φ∞ can be used to
predict the ionic atmosphere with which the cell itself is in equilibrium, but this differs
from the ion distribution at the top of the layer, which controls the electrokinetic
behaviour.

It is still unclear how much charge is carried on the cell membrane itself rather
than on the glycocalyx. However, in the parameter ranges of physiological and
experimental interest, for arrays of three or more cylinders in depth, the addition
of further cylinders has no significant effect on the calculated potential around the
uppermost three cylinders. Similarly, if the cell membrane at say x = −d is charged,
then it is equivalent to the boundary condition

∂φ

∂x
= q on x = −d,

where q represents the surface charge of the cell membrane. If q is small compared
to the charge density of the cylinders, then this will have little effect. Even if q ' σ
it will only affect the potential close to the cell membrane itself. The potential at the
top of the glycocalyx will be affected by q only if the depth of the model layer is
fewer than 5 cylinders.

The use of the Poisson–Boltzmann equation in the analysis merits discussion. It
treats the mobile ions as a continuum, assuming in effect that the mobile ions are
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small relative to the radius of the cylindrical polyelectrolyte ion. It also neglects
direct interactions between the different species of mobile ion, and between adjacent
polyions. In addition, the derivation of the equation assumes that the system of mobile
ions is in thermal equilibrium, even though the surrounding solute is in motion. This
latter assumption is valid provided the thermal energy of ions is much larger than
the work required to move them, or

6πµλL3 � kT ,

where µ is the viscosity of the fluid, λ a typical shear rate, and L a relevant length
scale. This constraint is trivially satisfied on the molecular length scale L = 0.5 nm for
shear stresses in the circulation for which µλ� 40 N m−2 (Pedley 1980). Perturbations
to the equilibrium charge cloud were considered by Sherwood (1980, 1981).

In general, the mobile monovalent ions are smaller than the polyions, even in
hydrated form, but they are of the same order of magnitude. The validity of the
Poisson–Boltzmann equation on these length scales has been investigated in vari-
ous ways. Fixman (1979) examined the effects of finite ion size and direct ion–ion
interactions, while other investigations have compared the Poisson–Boltzmann equa-
tion predictions with those of Monte Carlo methods (e.g. Le Bret & Zimm 1984).
These investigations suggest that the Poisson–Boltzmann equation works well for
small monovalent counter-ions in low enough concentrations, but under-predicts the
concentrations of co-ions close to the cylinder. They also show that the Poisson–
Boltzmann approximation is less good for large ions, with radius similar to that of
the cylinder, or in concentrated solutions of ions, since in these cases the ion distri-
butions are dominated by steric effects, which are neglected in the derivation of the
Poisson–Boltzmann equation. Discrepancies between the predictions of Monte-Carlo
methods and those of the Poisson–Boltzmann equation also arise when the ions are
multivalent. Some of the discrepancies with Monte-Carlo methods can be addressed
by modifying the Poisson–Boltzmann equation (e.g. Haydon 1964). Including a finite
ion radius could also introduce electro-osmotic coupling between the ions and the
fluid (Derjaguin & Dukhin 1974).

In this paper we have linearized the Poisson–Boltzmann equation, which is a valid
approximation in most physiological contexts. Comparison with results from the full
nonlinear equation, and with cylindrical cell and line-charge models, are presented
elsewhere (Mestel et al. 1999). Cylindrical cell approximations give reasonable results
for the potential but are less accurate for hydrodynamic quantities, because of the
slower rate of decay from the cylinder surface.

Finally, we discuss the use of the Stokes equations in calculating the flow. The fluid
consists mainly of water and mobile ions and it is assumed that this mixture can
be represented by a continuum on length scales close to those of the individual ions
and water molecules. This effectively assumes that the concentration of ions is low
enough that there are no volume exclusion effects, and that the ions move at the same
velocity as adjacent water molecules. This assumption merits further investigation by
comparing the predictions of the continuum model with those of, for example, Monte
Carlo methods, but this is beyond the scope of this paper.

Although blood itself is non-Newtonian at small shear rates, this is mainly because
of the presence of the red cells. On scales much shorter than the diameter of these
red cells it is reasonable to treat the blood plasma as Newtonian. Osmotic effects due
to exclusion of blood proteins from the glycocalyx are neglected. The use of a no-slip
boundary conditions on the surface of the cylinders is again an assumption worthy
of closer investigation. On a molecular level it is not certain how water molecules
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will interact with a polyelectrolyte ion when moving past it. As the model presented
here already approximates the complex shape of the polyelectrolyte ions by a simple
cylinder, it is unlikely that the no-slip condition would introduce significant further
error, provided an appropriate value for the radius a is taken.

A. Mokady was supported by a Prize Studentship in Mathematical Biology awarded
by the Wellcome Trust.
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